1 Run an Existing Model

Tutorial 1: Run an Existing Model

This tutorial walks through the steps to download, run, and view the output of an existing model. There are several existing models publically available on Github for the purposes of this tutorial we will use The Climate Framework for Uncertainty, Negotiation and Distribution (FUND), available on Github here.

Working through the following tutorial will require:

If you have not yet prepared these, go back to the main tutorial page and follow the instructions for their download.

Step 1. Download FUND

The first step in this process is downloading the FUND model, which is now made easy with the Mimi registry. Assuming you have already done the one-time run of the following to connect your julia installation with the central Mimi registry of Mimi models

pkg> registry add https://github.com/mimiframework/MimiRegistry.git

You simply need to add the FUND model with

add MimiFUND

Step 2. Run FUND

The next step is to run FUND. If you wish to first get more aquainted with the model itself, take a look at the provided online documentation.

In order to run FUND, you will need to have the packages Distributions and StatsBase installed, and if not do so by entering Pkg mode by typing ], and then add StatsBase and add Distributions.

Now open a julia REPL and type

using MimiFUND

to access the public API to FUND, which currently includes the function getfund, a function that returns a version of fund allowing for different user specifications.

m = getfund()
run(m)

Note that these steps should be relatively consistent across models, where a repository for ModelX should contain a primary file ModelX.jl which exports, at minimum, a function named something like getModelX or construct_ModelX which returns a version of the model, and can allow for model customization within the call.

In this case, the function getfund has the signature

getfund(; nsteps = default_nsteps, datadir = default_datadir, params = default_params)

Thus there are no required arguments, although the user can input nsteps to define the number of timesteps (years in this case) the model runs for, datadir to define the location of the input data, and params, a dictionary definining the parameters of the model. For example, if you wish to see only the first 100 timesteps,you may use:

using MimiFUND
m = getfund(nsteps = 100)
run(m)

Step 3. Access Results: Values

After the model has been run, you may access the results (the calculated variable values in each component) in a few different ways.

Start off by importing the Mimi package to your space with

using Mimi

First of all, you may use the getindex syntax as follows:

m[:ComponentName, :VariableName] # returns the whole array of values
m[:ComponentName, :VariableName][100] # returns just the 100th value

Indexing into a model with the name of the component and variable will return an array with values from each timestep. You may index into this array to get one value (as in the second line, which returns just the 100th value). Note that if the requested variable is two-dimensional, then a 2-D array will be returned. For example, try taking a look at the income variable of the socioeconomic component using the code below:

m[:socioeconomic, :income] 
m[:socioeconomic, :income][100] 

You may also get data in the form of a dataframe, which will display the corresponding index labels rather than just a raw array. The syntax for this uses getdataframe as follows:

getdataframe(m, :ComponentName=>:Variable) # request one variable from one component
getdataframe(m, :ComponentName=>(:Variable1, :Variable2)) # request multiple variables from the same component
getdataframe(m, :Component1=>:Var1, :Component2=>:Var2) # request variables from different components

Try doing this for the income variable of the socioeconomic component using:

getdataframe(m, :socioeconomic=>:income) # request one variable from one component

Step 4. Access Results: Plots and Graphs

After running the FUND model, you may also explore the results using plots and graphs.

Mimi provides support for plotting using VegaLite and VegaLite.jl within the Mimi Explorer UI, and the LightGraphs and MetaGraphs for the plot_comp_graph function.

Explore

If you wish to explore the results graphically, use the explorer UI, described here in Section 5 of the Mimi User Guide.

To explore all variables and parameters of FUND in a dynamic UI app window, use the explore function called with the model as the required first argument, and the optional argument of the title The menu on the left hand side will list each element in a label formatted as component: variable/parameter.

explore(m, title = "My Window")

Alternatively, in order to view just one parameter or variable, call the function explore as below to return a plot object and automatically display the plot in a viewer, assuming explore is the last command executed. This call will return the type VegaLite.VLSpec, which you may interact with using the API described in the VegaLite.jl documentation. For example, VegaLite.jl plots can be saved as PNG, SVG, PDF and EPS files. You may save a plot using the save function. Note that saving an interactive plot in a non-interactive file format, such as .pdf or .svg will result in a warning WARN Can not resolve event source: window, but the plot will be saved as a static image. If you wish to preserve interactive capabilities, you may save it using the .vegalite file extension. If you then open this file in Jupyter lab, the interactive aspects will be preserved.

using VegaLite
run(m)
p = explore(m, component1, parameter1)
save("MyFilePath.svg", p)

More specifically for our tutorial use of FUND, try:

using VegaLite
p = explore(m, :socioeconomic, :income)
save("MyFilePath.svg", p)

Component Graph

In order to view a DAG representing the component ordering and relationships, use the plot_comp_graph function to view a plot and optionally save it to a file. This function returns a plot object displayed in the viewer and showing a graph with components as nodes and component connections as edges.

plot_comp_graph(m, "MyFilePath.png")

Step 4. Tutorial 2

Next, feel free to move on to the second tutorial, which will go into depth on how to modify an existing model such as FUND!